雅恒论坛

您可以使用eMule或eMule Mod(参见eMuleFans.com的Mod页emule-mods.de的Mod页)(Windows)、aMule(Win、Linux、Mac)等软件下载eD2k链接。可以参考这里的修复、关联eD2k协议链接方法
eMule收藏集(.emulecollection)文件是您选中的所有链接的列表文件。eMule可以直接下载它们。
按住SHIFT键选择可以选中多个选择框。
可用文件名和大小选择器来选择文件。
查看eD2k Link Selector php类主页可以下载此php类或联系作者。
查看eD2k Link Selector WordPress 插件主页可以下载WordPress插件。
文件名选择器帮您根据文件名称或后缀来选择文件。不分大小写。
符号使用:
和:空格( )、+
不包含:-
或:|
转义:一对英文引号("");
匹配开头:^
匹配结尾:$
例如:
选中所有名称中包含有“eMule”或“0.49c”字眼,但不包含有“exe”字眼的:emule|0.49c -exe
选中所有名称的开头是“eMule”,结尾是“0.49c”的:^emule 0.49c$
选中所有名称中带有“eMule 0.49c”的(必须是“eMule 0.49c”,中间没有别的字符,不能是“eMule fake 0.49c”),需要转义:"emule 0.49c"
大小选择器帮您根据文件大小选择文件。
查看: 1471|回复: 0

清华再次开源,效果比chatglm好,而且可以商用了,chatglm2-6...

[复制链接]

41

主题

68

帖子

435

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
435
发表于 2023-6-26 18:01:17 | 显示全部楼层 |阅读模式
时隔一个月,清华再次升级chatglm-6B,开源了chatglm2-6B,看评测效果很不错呢,果断试试,哈哈。。。
介绍
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:
  • 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
  • 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
  • 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
  • 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。如果您发现我们的开源模型对您的业务有用,我们欢迎您对下一代模型 ChatGLM3 研发的捐赠。

评测结果
我们选取了部分中英文典型数据集进行了评测,以下为 ChatGLM2-6B 模型在 MMLU (英文)、C-Eval(中文)、GSM8K(数学)、BBH(英文) 上的测评结果。
640 - 2023-06-26T175632.740.png

640 - 2023-06-26T175635.029.png

推理性能
ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度。生成 2000 个字符的平均速度对比如下
640 - 2023-06-26T175643.575.png

Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 INT4 量化的推理时,初代的 ChatGLM-6B 模型最多能够生成 1119 个字符就会提示显存耗尽,而 ChatGLM2-6B 能够生成至少 8192 个字符。
640 - 2023-06-26T175646.018.png
我们也测试了量化对模型性能的影响。结果表明,量化对模型性能的影响在可接受范围内。
640 - 2023-06-26T175648.425.png


ChatGLM2-6B 与ChatGLM对比测试
数理逻辑
640 - 2023-06-26T175650.875.png

知识推理

640 - 2023-06-26T175655.413.png


长文档理解
640 - 2023-06-26T175657.684.png



调试代码和chatglm差别不大

微信图片_20230626180235.png



640 - 2023-06-26T175641.047.png
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

备案号:粤ICP备14013464号
快速回复 返回顶部 返回列表